Statement of

Ronald O'Rourke
Specialist in Naval Affairs

Before

Committee on Transportation and Infrastructure
Subcommittee on Coast Guard and Maritime Transportation
U.S. House of Representatives

Hearing on

“Icebreaker Acquisition and the Need for a National Maritime Strategy”

November 29, 2018
Chairman Mast, Ranking Member Garamendi, distinguished members of the subcommittee, thank you for the opportunity to appear before you today to testify on icebreaker acquisition and the need for a national maritime strategy. In my work as a CRS analyst on naval and maritime military issues for the past 34 years, I have covered Coast Guard ship acquisition for Congress for 20 years, the polar icebreaker program specifically for 10 years, and issues relating to military sealift ships periodically for 28 years. My biography is shown in Appendix A.

Appendix B to this statement presents a general summary of some lessons learned in government shipbuilding. Appendix C presents some considerations relating to the use of warranties in government shipbuilding. Appendix D presents some considerations relating to avoiding procurement cost growth vs. minimizing procurement costs in government shipbuilding. Appendix E presents discussion of the Coast Guard’s National Security Cutter (NSC) program, Offshore Patrol Cutter (OPC) program, Fast Response Cutter (FRC) program, and Waterways Commerce Cutter (WCC) program, which help form the context for Coast Guard icebreaker procurement in a situation of finite Coast Guard procurement funding.

Icebreaker Acquisition

Funding and Acquisition Context

PC&I Account Funding Levels

There has been some discussion recently of how certain Coast Guard procurement priorities, including icebreakers, would not be affordable if the Coast Guard’s Procurement, Construction, and Improvements (PC&I) account in coming years were limited to an average of about $1.1 billion per year. An average

1 See, for example:
- CRS Report 98-830 F, Coast Guard Integrated Deepwater System: Background and Issues for Congress, by Ronald O’Rourke, first version October 5, 1998, final (i.e., archived) version June 1, 2001;
- CRS Report RS21019, Coast Guard Deepwater Program: Background and Issues for Congress, by Ronald O’Rourke, first version September 25, 2001, final (i.e., archived) version December 8, 2006;
- CRS Report RL33753, Coast Guard Deepwater Acquisition Programs: Background, Oversight Issues, and Options for Congress, by Ronald O’Rourke, first version December 18, 2006, final (i.e., archived) version January 20, 2012; and

3 See, for example:
- CRS Report 90-446 F, Sealift and Operation Desert Shield, by Ronald O’Rourke, September 17, 1990;
- CRS Report 91-421 F, Persian Gulf War: Defense-Policy Implications for Congress, coordinated by Ronald O’Rourke, May 15, 1991 (section on sealift);
- CRS Report RL31946, Iraq War: Defense Program Implications for Congress, coordinated by Ronald O’Rourke, June 4, 2003 (section on sealift); and

4 See Government Accountability Office, Coast Guard Acquisitions[] Actions Needed to Address Longstanding Portfolio Management Challenges, GAO-18-454, July 2018, Figure 4 on page 22, and GAO’s spoken testimony during the question-and-answer portion of a July 24, 2018, hearing on Coast Guard acquisition programs and mission balance and effectiveness before the Coast Guard and Maritime Transportation subcommittee of the House Transportation Committee, during which Figure 4, which depicts a funding funnel, was shown on the hearing room’s display screens. (The funnel, which compares an annual PC&I
PC&I funding level of about $1.1 billion per year would have that effect. In 2013, then-Coast Guard Commandant Robert Papp testified that an annual PC&I funding level of about $1 billion per year “almost creates a death spiral for the Coast Guard.” The notion that the PC&I funding level will be limited to an average of about $1.1 billion per year, however, is no longer strongly supported by recent data on Coast Guard annual funding requests, annual enacted funding levels, or projected future annual funding requests as shown in Coast Guard five-year Capital Investment Plans (CIPs).

In assessing future funding levels for executive branch agencies, a common practice is to assume or predict that the figure in coming years will likely be close to where it has been in previous years. While this method can be of analytical and planning value, for an agency like the Coast Guard, which goes through periods with less acquisition of major platforms and periods with more acquisition of major platforms, this approach might not always be the best approach, at least for the PC&I account.

More important, in relation to maintaining Congress’s status as a co-equal branch of government, including the preservation and use of congressional powers and prerogatives, an analysis that assumes or predicts that future funding levels will resemble past funding levels can encourage an artificially narrow view of congressional options regarding future funding levels, which could deprive Congress of agency in the exercise of its constitutional power to set funding levels and determine the composition of federal spending.

As one example of how past funding levels were not the best guide to future funding levels, and of how Congress has exercised its constitutional power to set funding levels and determine the composition of federal spending, during the period FY2008-FY2015, when the Navy’s shipbuilding account averaged about $14.7 billion per year in then-year dollars, there was recurring discussion about the challenge of increasing the account to the substantially higher annual funding levels that would soon be needed to begin implementing the Navy’s 30-year shipbuilding plan. Projections were prepared by CBO showing the decline in the size of the Navy that would occur over time if funding levels in the shipbuilding account did not increase substantially from the average level of about $14.7 billion per year. Congress, after assessing the situation, increased the shipbuilding account to $18.7 billion in FY2016, $21.2 billion in FY2017, $23.8 billion in FY2018, and $24.2 billion in FY2019. These increasing funding levels occurred even though the Budget Control Act, as amended, remained in operation during those years. At
the most recent figure of $24.2 billion, the Navy’s shipbuilding account is now 74% greater in then-year dollars than it was as recently as FY2010.

Coast Guard’s Non-Use of Multiyear Contracting

In connection with my work on ship acquisition, I maintain the CRS report on multiyear procurement (MYP) and block buy contracting. In both that report and in testimony I have given to other committees in recent years on Coast Guard ship acquisition, I have noted the stark contrast between the Navy—which uses multiyear contracting (in the form of MYP or block buy contracting) extensively to reduce its ship- and aircraft-procurement costs by billions of dollars—and the Coast Guard, which to date has never used multiyear contracting in its ship or aircraft acquisition programs.

The Navy in recent years, with congressional approval, has used multiyear contracting for, among other things, all three of its year-to-year shipbuilding programs—the *Virginia*-class attack submarine program, the DDG-51 destroyer program, and the Littoral Combat Ship (LCS) program. The Navy has been using multiyear contracting for the *Virginia*-class and DDG-51 programs more or less continuously since the late 1990s. Savings from the use of MYP recently have, among other things, helped Congress and the Navy to convert a nine-ship buy of DDG-51 class destroyers in FY2013-FY2017 into a 10-ship buy, and a nine-ship buy of *Virginia*-class attack submarines in FY2014-FY2018 into a 10-ship buy. The Navy is also now using block buy contracting for the six initial ships in the *John Lewis* (TAO-205) class oiler program, and is considering or anticipating using them for procuring LPD-17 Flight II amphibious ships, FFG(X) frigates, and *Columbia*-class ballistic missile submarines. The Navy’s use or prospective use of multiyear contracting for its year-to-year shipbuilding programs is arguably now almost more of a rule than an exception in Navy shipbuilding. For Congress, granting approval for using multiyear contracting involves certain tradeoffs, particularly in connection with retaining year-to-year control of funding. In the case of Navy shipbuilding, Congress has repeatedly accepted these tradeoffs.

In contrast with Navy practice, the Coast Guard often uses contracts with options in its ship-acquisition programs. Contracts with options can be referred to as *multiple-year* contracts, but they are not *multiyear* contracts. Instead, contracts with options operate more like annual contracts, and they cannot achieve the kinds of savings that are possible with multiyear contracts. Like the other military services, the Coast

9 CRS Report R41909, *Multiyear Procurement (MYP) and Block Buy Contracting in Defense Acquisition: Background and Issues for Congress*, by Ronald O'Rourke and Moshe Schwartz.

10 See, for example, CRS Testimony TE10020, *Building a 21st Century Infrastructure for America: Coast Guard Sea, Air, and Land Capabilities: Part II*, by Ronald O'Rourke, and CRS Testimony TE10004, *The Status of Coast Guard Cutter Acquisition Programs*, by Ronald O'Rourke.

11 The term year-to-year shipbuilding program is used here to mean a shipbuilding program in which at least one ship of that kind is procured each year. The Coast Guard plans to execute the OPC program as a year-to-year shipbuilding program.

12 From a congressional perspective, tradeoffs in making greater use of multiyear contracting include the following: reduced congressional control over year-to-year spending and tying the hands of future Congresses; reduced flexibility for making changes in acquisition programs in response to unforeseen changes in strategic or budgetary circumstances (which can cause any needed funding reductions to fall more heavily on acquisition programs not covered by multiyear contracts); a potential need to shift funding from later fiscal years to earlier fiscal years to fund economic order quantity (EOQ) purchases (i.e., up-front batch orders of selected components for some or all of the end items that are to be procured under a multiyear contract); the risk of having to make penalty payments to shipbuilders if multiyear contracts need to be terminated due to unavailability of funds needed for the continuation of the contracts; and the risk that materials and components purchased for ships to be procured in future years might go to waste if those ships are not eventually procured. Congress has considered these tradeoffs in deciding whether to grant the Navy authority for using multiyear contracting in the service’s shipbuilding and other acquisition programs.

13 For additional discussion, see CRS Report R41909, *Multiyear Procurement (MYP) and Block Buy Contracting in Defense Acquisition: Background and Issues for Congress*, by Ronald O'Rourke and Moshe Schwartz, particularly the section entitled “MYP and BBC vs. Contracts with Options.”

CRS TESTIMONY
Prepared for Congress
Guard has statutory authority to use MYP contracting and can be granted authority by Congress to use block buy contracting.

Polar Security Cutter (PSC) (aka Polar Icebreaker)

The CRS report on the polar icebreaker program, which the Coast Guard now refers to as the Polar Security Cutter (PSC) program, provides substantial discussion of various aspects of the program. Below, as requested, are some focused observations on the program.

Reduction in Estimated Procurement Cost and Business Case

One of the most notable changes in the PSC program over the last year or two has been the reduction in the estimated unit procurement cost of the ships. The procurement cost of a new heavy polar icebreaker had earlier been estimated informally at roughly $1 billion, but the Coast Guard and Navy informed CRS and CBO in March 2018 that they now believe that three polar icebreakers could be acquired for a total cost of about $2.1 billion, or an average of about $700 million per ship. (The first ship will cost more than the other two because it will incorporate design costs for the class and be at the start of the production learning curve for the class.) The March 2, 2018, Request for Proposals (RFP) for the PSC program states that “For informational purposes only, the government has established an estimate for the HPIB [heavy polar icebreaker] shipbuilder costs in the amount of $746M [million] for the lead ship… with an average ship price of $615M across three HPIBs….” Other information reported by GAO identifies a smaller reduction in procurement cost, to something more than $900 million per ship. Other things held equal, reductions in the estimated unit procurement cost of the polar icebreaker strengthen the business case for the program. A reduction in estimated unit procurement cost to an average of $700 million per ship would strengthen it substantially.

Option for Block Buy Contract

The baseline plan for the PSC program calls for acquiring the ships using a contract with options, but Coast Guard and Navy officials are open to the idea of instead using a block buy contract to acquire at least some of the ships, and requested information on this possibility as part of the RFP for the PSC.

15 Source: March 16, 2018, Coast Guard-Navy briefing to CRS and CBO on the polar icebreaker program. For further discussion, see the section entitled “Estimated Acquisition Cost Has Declined Substantially” in CRS Report RL34391, *Coast Guard Polar Icebreaker Program: Background and Issues for Congress*, by Ronald O'Rourke.

16 Naval Sea Systems Command (HQ), Solicitation N0002418R2210, March 2, 2018, page 257 of 294. See also Government Accountability Office, *Coast Guard Acquisitions[:] Polar Icebreaker Program Needs to Address Risks before Committing Resources*, GAO-18-600, September 2018, pp. 42-43. The GAO report also states that DHS and the Coast Guard estimate the total lifecycle cost of a three-ship PSC program at $8,545 million (objective) and $9,827 million (threshold) (page 13), and that the ships’ detail design and construction costs account for about 25% of these figures, with the remaining 75% or so accounted for by remaining acquisition costs, 30 years of annual operating and support (O&S) costs, and end-of-life ship-disposal costs (page 31). Twenty-five percent of $8,545 million and $9,827 million would equate to design and construction costs of $2,136.3 million (an average of about $712 million per ship) and $2,456.8 million (an average of about $819 million per ship).

17 A May 2018 GAO report stated that the acquisition program baseline (APB) approved for the polar icebreaker program in January 2018 estimated the program’s acquisition cost at $3,207 million, and that the “current estimate” of the program’s acquisition as of January 2018 was $2,789 million, or an average of about $930 million per ship. (Government Accountability Office, *Homeland Security Acquisitions[:] Leveraging Programs’ Results Could Further DHS’s Progress to Improve Portfolio Management*, GAO-18-339SP, May 2018, p. 85.) See also Government Accountability Office, *Coast Guard Acquisitions[:] Actions Needed to Address Longstanding Portfolio Management Challenges*, GAO-18-454, July 2018, which states on page 18 that “The polar icebreaker program has an estimated total acquisition cost of more than $3 billion....”
program that was released on March 2, 2018. Using the above-mentioned $2.1 billion estimated cost for a three-ship procurement of PSCs, and based on savings estimates provided by the Navy in the past for Navy shipbuilding programs that were being proposed for multiyear contracting, using a block buy contract that included authority for making economic order quantity (EOQ) purchases\(^\text{18}\) rather than a contract with options might reduce the combined acquisition cost of three PSCs by upwards of 7%, which could equate to a savings of upwards of $150 million.

A congressionally mandated July 2017 National Academies of Sciences, Engineering, and Medicine (NASEM) report on acquisition and operation of polar icebreakers states (emphasis as in original):

3. Recommendation: USCG should follow an acquisition strategy that includes block buy contracting with a fixed price incentive fee contract and take other measures to ensure best value for investment of public funds.

Icebreaker design and construction costs can be clearly defined, and a fixed price incentive fee construction contract is the most reliable mechanism for controlling costs for a program of this complexity. This technique is widely used by the U.S. Navy. To help ensure best long-term value, the criteria for evaluating shipyard proposals should incorporate explicitly defined lifecycle cost metrics....

A block buy authority for this program will need to contain specific language for economic order quantity purchases for materials, advanced design, and construction activities. A block buy contracting program with economic order quantity purchases enables series construction, motivates competitive bidding, and allows for volume purchase and for the timely acquisition of material with long lead times. It would enable continuous production, give the program the maximum benefit from the learning curve, and thus reduce labor hours on subsequent vessels....

If advantage is taken of learning and quantity discounts available through the recommended block buy contracting acquisition strategy, the average cost per heavy icebreaker is approximately $791 million, on the basis of the acquisition of four ships.\(^\text{19}\)

Although Coast Guard officials have expressed interest in using a block buy contract for procuring PSCs, they are considering the option of procuring the first PSC under a single-ship contract and then using a block buy contract to procure subsequent PSCs. In support of that option, Coast Guard officials have noted the risks involved in building a lead ship and the fact that the United States has not built a heavy polar icebreaker in more than 40 years. Opponents of including the first PSC in a block buy contract might argue, for example, that problems with the design of PSC components might be transmitted from the first PSC to later PSCs by up-front EOQ purchases of those components made under a block buy contract. They might additionally argue that excluding the first PSC from a block buy contract preserves more government flexibility on whether and when to procure a second PSC, which could be advantageous for responding to potential changes in operational needs or budgetary circumstances.

Supporters of including the first PSC in a block buy contract could argue that block buy contracting was invented to a large degree expressly to permit a lead ship to be included in the contract, that the Navy has included lead ships in block buy contracts in the Virginia-class attack submarine program and the TAO-205 class oiler program, and that the Navy is considering using a block buy contract that includes the lead ship for procuring the initial ships in the Columbia-class ballistic missile submarine program. The comparison with the Navy’s plans for the Columbia class, they could argue, is of particular note, because the United States has not procured the lead ship of a new class of ballistic missile submarines in more than 40 years, the Columbia-class design is more complex in certain regards than the PSC design, and the

\(^{18}\) EOQ purchases are up-front batch orders of selected components for some or all of the end items (ships in this case) that are to be procured under a multiyear contract.

Columbia-class design will incorporate a new-design electric-drive propulsion plant—something that the United States has never before done on a series-production nuclear-powered submarine.

The lead ship in the PSC program will carry a risk of requiring design changes to fix problems in the design that are only discovered as a result of building the design. That risk, however, will exist regardless of whether the lead ship is built under a single-ship contract of a block buy contract, and it is not clear how much more chance there would be under a block buy contract of transmitting any such design problems to the second PSC, because the Coast Guard’s notional schedule for the PSC program calls for procuring the second ship about 18 months after the first (i.e., while construction of the first PSC is still in progress). To the extent that there would be a greater chance of transmitting design problems to the second PSC under a block buy contract, the question would then become one of weighing the potential cost of fixing those design problems against the added economies of including the first PSC in a block buy contract. Supporters of including the lead ship in a block buy contract could argue that the risks of encountering a design problem in the first ship have been mitigated by the industry’s shift since the last polar icebreakers were built from paper designs to computer-aided design, by the Navy’s involvement in the PSC program, and by the PSC program’s strategy of using a parent design (i.e., an existing polar-capable icebreaker design) as the basis for the PSC design. As shown in Appendix B, a key lesson-learned in government shipbuilding is to bring the design of the ship in question to a high level of completion before beginning construction of the ship, precisely so as to minimize the risk of design problems. Supporters of including the lead ship in a block buy contract could argue that if there is a significant risk of substantial design problems in the lead ship, that is not an argument against including the lead ship in a block buy contract—it is an argument against beginning construction of the ship under any form of contract.

Risk of Delayed Delivery of Lead Ship

GAO has identified a risk of the first PSC being delivered later than its currently scheduled delivery date.\(^{20}\) CRS agrees with that assessment. The Navy’s experience in building lead ships suggests that there is a substantial risk of the first PSC being delivered late—perhaps as much as a year or more later than currently scheduled. A late delivery could equate to an increase in the cost of building the ship, because it could reflect having to use more labor hours to build the ship than had been estimated, and because the ship will absorb more of the shipyard’s overhead costs by remaining in the shipyard for a longer period of time. The government can insulate itself against the risk of such cost growth by using a fixed-price contract to build the ship (which the Coast Guard and Navy plan to do).

The possibility of a late delivery is something the Coast Guard and Congress may consider preparing for in terms of investments for maintaining Polar Star as an operational ship and/or seeking a short-term bridging charter of a foreign polar icebreaker. To the extent that a delay in delivering the lead ship would extend a gap in time between the retirement of Polar Star and the entry into service of the first PSC, that could become an argument for starting construction of the lead PSC as soon as its design is brought to a high level of completion and the ship is otherwise ready to begin construction.

Option for Using a Common Design for Heavy and Medium PSCs

The Coast Guard envisages procuring up to three new medium icebreakers after it procures three new heavy polar icebreakers—a plan known as 3+3. The July 2017 NASEM report concluded that notional operational requirements for new medium polar icebreakers would result in ships that would not be too different in size from new heavy polar icebreakers. (That is not particularly surprising—the Coast Guard’s current medium polar icebreaker, Healy, is actually somewhat larger than the Coast Guard’s

heavy polar icebreaker, Polar Star. Healy has less icebreaking capability than Polar Star, but more capacity for supporting onboard science operations.) Given this probable similarity in size, the NASEM report recommended building a single medium polar icebreaker to the same common design as the three new heavy polar icebreakers (i.e., 4+0), and operating these four new ships in conjunction with Healy to produce a five-ship polar icebreaker fleet. The 4+0 production strategy, the report concluded, would reduce the cost of the medium icebreaker by avoiding the cost of developing a second icebreaker design and making the medium polar icebreaker the fourth ship on an existing production learning curve rather than the first ship on a new production learning curve. An abstract from the NASEM report on this proposal is shown in Appendix F to this statement.

If policymakers decide to procure a second or third new medium polar icebreaker, the same general approach recommended by the NASEM report could be followed, leading to a 5+0 or 6+0 acquisition. The potential percentage savings under a five- or six-ship block buy contract with EOQ authority could be greater than the figure of upwards of 7% mentioned earlier for a three-ship block buy—they could be closer to 10%. Building a single common icebreaker design rather than two designs to meet needs for heavy and medium polar icebreakers might also reduce life-cycle operation and support costs.

An April 12, 2018, press report states:

As the Coast Guard prepares to review industry bids for a new heavy polar icebreaker, the service is keeping its options open for the right number and mix of polar icebreakers it will need in the future, Adm. Paul Zukunft, the [then-]commandant of the Coast Guard, said on Wednesday [April 11].

The Coast Guard’s program of record is for three heavy and three medium polar icebreakers but Zukunft said the “jury is still out” whether that will remain so. Right now, the service is aiming toward building three new heavy icebreakers, but it might make sense just to keep building these ships, he told reporters at a Defense Writers Group breakfast in Washington, D.C.

Zukunft said that “when you start looking at the business case after you build three, and then you need to look at what is the economy of scale when you start building heavy icebreakers, and would it be less expensive to continue to build heavies and not mediums.” He added that the heavy icebreakers provide more capability, and if the price is “affordable” and in “the same range” as building medium icebreakers, then “maybe you end up with one class of heavy icebreakers.”

Building only one class of ships has a number of advantages in terms of maintenance, crew familiarity, configuration management, and more, he said. A decision on what the future icebreaker fleet will consist of is “still probably several years out …. but that’s one option that we want to keep open going forward,” Zukunft said.21

Great Lakes Icebreakers

The Coast Guard’s current Great Lakes icebreaker fleet consists of nine cutters:

- one heavy icebreaker—Mackinaw (WLBB-30), a 240-foot ship displacing 3,500 tons;
- six 140-foot Bay-class icebreaking tugs displacing 662 tons each; and
- two 225-foot Juniper-class seagoing buoy tenders displacing about 2,000 tons each that have a light icebreaking capability.22

21 Calvin Biesecker, “Coast Guard Leaving Options Open For Future Polar Icebreaker Fleet Type,” Defense Daily, April 12, 2018. Ellipsis as in original.

22 Source: U.S., Coast Guard, “Ninth Coast Guard District Units,” accessed November 19, 2018, at: https://www.atlanticarea.uscg.mil/Atlantic-Area/Units/District-9/Ninth-District-Units/. A total of 10 cutters are assigned to the Ninth District, which is responsible for the Great Lakes, the Saint Lawrence Seaway, and parts of the surrounding states. The
Although *Mackinaw* is referred to as a heavy icebreaker, the word *heavy* in this instance is being used in the context of Great Lakes icebreaking—*Mackinaw* is much larger and has more icebreaking capability than the eight other ships listed above. Mackinaw would not, however, qualify as a heavy polar icebreaker, as it is much smaller and has much less icebreaking capability than a heavy polar icebreaker.

Coast Guard officials have stated that they do not view the procurement of additional Great Lakes icebreakers as an urgent near-term acquisition need. In support of this assessment, they cite the capabilities of the current Great Lakes icebreaking fleet, the relatively young age of *Mackinaw* (which entered service in 2006), service life extension work being done on the ice-breaking tugs that is designed to add 15 years to their service lives, and Canada’s own Great Lakes icebreaking capabilities. A 2016 Coast Guard report to Congress on the Great Lakes icebreaking mission stated:

> The current mix of heavy and medium [Great Lakes] icebreakers is capable of managing priorities and requests for icebreaking in Tier 1 and 2 waterways. When a severe ice season stresses Coast Guard asset capabilities, the existing agreement and partnership with Canada fills the capability gap and brings in extra heavy-icebreaking resources to manage the ice… [T]he 2014 and 2015 ice seasons were a 20-year anomaly, consuming almost twice as many cutter resource hours as in any other year since 2005.

> The Coast Guard cannot reliably predict the economic impact of maintaining a single heavy Great Lakes icebreaker. Additionally, given the extreme conditions when ice coverage exceeds 90 percent, it is not clear that shipping delays would be significantly mitigated by an increase in icebreaking capability. Delays can be associated with several factors such as slow transit speeds, availability of pilots, and simultaneous and competing demand signals for icebreaking services across the Great Lakes.

The Coast Guard’s position notwithstanding, some Members of Congress in recent years have expressed interest in the possibility of bolstering the Coast Guard’s Great Lakes icebreaking fleet by procuring a second icebreaker with capabilities generally similar to those of *Mackinaw*. Interest in this option was reinforced by the winters of 2013-2014 and 2014-2015, which featured particularly high levels of ice coverage on the Great Lakes. The committee report language requiring the above-quoted Coast Guard report to Congress is one example of this interest. Another example is Section 215 of S. 1129, the Coast

tenth cutter assigned to the Ninth District is a 100-foot inland buoy tender whose primary missions do not include icebreaking.

23 At continuous speeds of 3 knots, *Mackinaw* can break ice up to 32 inches thick, the 140-foot icebreaking tugs can break ice up to 22 inches thick, and the 225-foot seagoing buoy tenders can break ice up to 14 inches thick.

24 The Coast Guard’s two heavy polar icebreakers—the operational *Polar Star* and the non-operational *Polar Sea*, are 399 feet long and displace about 13,200 tons each. *Polar Star* can break ice up to six feet (72 inches) thick at a continuous speed of 3 knots. The Coast Guard states that *Mackinaw* is equivalent to the Canadian Coast Guard ship *Samuel Risley*, a Great Lakes-homeported icebreaker and buoy tender that Canada classifies as a light icebreaker in a comparison conducted across its entire icebreaking fleet, including its Arctic icebreakers. (U.S. Coast Guard, *Great Lakes Icebreaking Mission Analysis, Fiscal Year 2016 Report to Congress*, August 30, 2016, p. 5.)

25 For more on this service life extension work, see U.S. Coast Guard, “In-Service Vessel Sustainment Program,” accessed November 19, 2018, at: https://www.dcms.uscg.mil/Our-Organization/Assistant-Commandant-for-Acquisitions-CG-9/Programs/Surface-Programs/In-Service-Vessel-Sustainment-Program/.

26 U.S. Coast Guard, *Great Lakes Icebreaking Mission Analysis, Fiscal Year 2016 Report to Congress*, August 30, 2016, p. 11. The report was required by S.Rept. 114-68 of June 18, 2015, the Senate Appropriations Committee’s report on S. 1619, the Department of Homeland Security Appropriations Bill, 2016 (see page 75).

27 Although interest in procuring a second heavy Great Lakes icebreaker was reinforced by high levels of ice coverage in the winters of 2013-2014 and 2014-2015, interest in Congress in procuring such a ship dates back further than 2013. See, for example, H.R. 1747 of the 111th Congress, the Great Lakes Icebreaker Replacement Act, which was introduced on March 26, 2009, reported by the Committee on Transportation and Infrastructure on April 21, 2009 (H.Rept. 111-81), and agreed to by the House by voice vote on April 27, 2009. A similar bill, S. 1024, was introduced in the Senate on May 12, 2009.

28 S.Rept. 114-68 stated:
Guard Authorization Act of 2017 as reported in the Senate (S.Rept. 115-89 of June 15, 2017), which states:

SEC. 215. Great Lakes icebreaker acquisition.

(a) Icebreaking on the Great Lakes.—For fiscal years 2018 and 2019, the Commandant of the Coast Guard may use funds made available pursuant to section 2702(2) of title 14, United States Code, as amended by section 101 of this Act, for the selection of a design for, and the construction of, an icebreaker that is at least as capable as the Coast Guard Cutter Mackinaw to enhance icebreaking capacity on the Great Lakes.

(b) Initial survey and design work.—The Commandant of the Coast Guard shall commence initial survey and design work associated with the acquisition of a new Coast Guard icebreaker that is at least as capable as the Coast Guard Cutter Mackinaw to enhance icebreaking capacity on the Great Lakes.

(c) Acquisition plan.—Not later than 45 days after the date of enactment of this Act, the Commandant shall submit a plan to the Committee on Commerce, Science, and Transportation of the Senate and the Committee on Transportation and Infrastructure of the House of Representatives for acquiring an icebreaker described in subsections (a) and (b). Such plan shall include—

(1) the details and schedule of the acquisition activities to be completed; and

(2) a description of how the funding for Coast Guard acquisition, construction, and improvements that was appropriated under the Consolidated Appropriations Act of 2017 (Public Law 115–31) will be allocated to support the acquisition activities referred to in paragraph (1).29

GREAT LAKES ICEBREAKING CAPACITY

The Coast Guard is required by law to maintain a heavy icebreaking capability on the Great Lakes to assist in keeping channels and harbors open to navigation in response to the reasonable demands of commerce to meet the winter shipping needs of industry. The Committee is concerned that the Coast Guard does not possess adequate capacity to meet its statutorily required icebreaking mission on the Great Lakes, with negative consequences to the regional and national economy as well as to the safety of local communities. While the Committee fully supports the Coast Guard’s Service Life Extension Project for its nine-vessel 140-foot icebreaking tugs as part of the In-Service Vessel Sustainment Program, it notes that additional assets may be necessary to successfully operate in the heavy ice conditions often experienced by the Great Lakes. The Committee directs the Coast Guard to undertake an updated mission analysis study to determine the assets necessary to effectively carry out its icebreaking requirements on the Great Lakes, including consideration of a second heavy icebreaker for the Great Lakes, consistent with the capabilities of the Mackinaw. The updated mission analysis should factor in recent historically high levels of ice coverage and the economic costs of reduced Great Lakes shipping associated with maintaining only one heavy icebreaker. The updated mission analysis shall be submitted to the Committee not later than 180 days after the date of enactment of this act.

29 In addition, Section 314 of S. 1129 as reported in the Senate states (emphasis added):

SEC. 314. Inland waterway and river tender, and bay class icebreaker acquisition plan.

(a) Acquisition plan.—Not later than 545 days after the date of enactment of this Act, the Commandant of the Coast Guard shall submit to the Committee on Commerce, Science, and Transportation of the Senate and the Committee on Transportation and Infrastructure of the House of Representatives a plan to replace the aging fleet of inland waterway and river tenders, and the bay class icebreakers.

(b) Contents.—The plan described in subsection (a) shall include—

(1) a schedule for the acquisition to begin;

(2) the date the first vessel will be delivered;

(3) the date the acquisition will be complete;

(4) a description of the order and location of replacements;

(5) an estimate of the cost per vessel and for total acquisition program of record; and

(6) an analysis of whether existing vessels can be used.
An examination of procurement costs for *Mackinaw*, the National Science Foundation’s ice-capable research ship *Sikuliaq*, new oceanographic research ships being procured for NOAA, and OPCs suggests that a new *Mackinaw*-sized heavy Great Lakes icebreaker built in a U.S. shipyard might have a design and construction cost between $175 million and $300 million, depending on its exact capabilities and the acquisition strategy employed.\(^\text{30}\) The design portion of the ship’s cost might be reduced if *Mackinaw’s* design or the design of some other existing icebreaker were to be used as the parent design. Depending on the capabilities and other work load of the shipyard selected to build the ship, the construction time for a new heavy Great Lakes icebreaker might be less than that of a new heavy polar icebreaker.

Need for a New National Maritime Strategy

Regarding the issue of the need for a national maritime strategy,\(^\text{31}\) four observations can be made.

Shift in Security Environment; New National Defense Strategy

The first observation relates to two legislative requirements from 2014 for the Department of Transportation (DOT) to issue a national sealift strategy and a national maritime strategy. GAO notes that these two requirements have not been met, and that this has deprived Congress of information for supporting decisionmaking relating to the U.S.-flag merchant fleet.\(^\text{32}\)

If DOT had issued such a strategy in the period 2014-2016 or even in 2017, they would have reflected the Obama Administration’s defense strategy rather than the Trump Administration’s defense strategy, an unclassified summary of which was not published until January 2018.\(^\text{33}\) More broadly, a national maritime strategy issued in the period 2014-2017 might not have fully reflected the shift in the international security environment from the post-Cold War era to the current era of renewed great power competition.\(^\text{34}\)

30 Source: CRS analysis of cost per weight for *Mackinaw* (adjusted for inflation), *Sikuliaq*, new NOAA oceanographic research ships now being procured, and OPCs.

31 As used here, the term *national maritime strategy* means a strategy for ensuring that the U.S. merchant marine fleet and the U.S. civilian mariner workforce are adequate for, among other things, meeting DOD needs for military sealift capacity in time of crisis or conflict. In other contexts, the term *maritime strategy* can have other meanings. Navy officials, for example, have often used the term to refer to a strategy for how to employ naval forces in a major conflict.

34 For more on this shift, see CRS Report R43838, *A Shift in the International Security Environment: Potential Implications for*
This shift was not placed explicitly at the forefront of declared U.S. national security strategy until the Trump Administration released its national security strategy in December 2017.35

In light of this, it might be argued that if a national maritime strategy had been issued in 2014-2017, it would today be in need of update, revision, or replacement. That does not negate the impact to policymakers of having been deprived of such a strategy in 2014-2017, but it suggests that even if such a strategy had been issued during that period, policymakers might nevertheless be in a situation today of wanting a new version to be prepared. A similar observation can be made about the Navy’s current force-level goal for achieving and maintaining a fleet of 355 ships. As discussed in the CRS report on Navy force-structure and shipbuilding plans, this force-level goal was based on a force structure analysis conducted in 2016, and thus reflects the Obama Administration’s defense strategy rather than the Trump Administration’s defense strategy.36 As noted in the CRS report, the Navy has acknowledged this issue and has stated that it is preparing an update or revision to its 355-ship force-level goal that will be based on the Trump Administration’s defense strategy.

Mobility Capabilities and Requirements Study 2018 (MCRS-18)

A second observation relates to Section 144(b) of the National Defense Authorization Act for Fiscal Year 2018 (H.R. 2810/P.L. 115-91 of December 12, 2017), which requires DOD to conduct a new mobility capability and requirements study, and to brief the congressional defense committees on the results of the study not later than September 30, 2018. DOD states that it started the study, which it refers to as the Mobility Capabilities and Requirements Study 2018 (MCRS-18), on March 8, 2018, and that it is scheduled for completion in the fall of 2018.37 In connection with the point made in the previous section, the Commander of U.S. Transportation Command (USTRANSCOM), Air Force General Darren W. McDew, testified earlier this year that MCRS-18 “will reflect requirements articulated in the new National Defense Strategy…”38

A September 25, 2017, press report about MCRS-18 states that “Since the early 1990s, Pentagon mobility studies have consistently identified a requirement for about 20 million square feet of roll-on-roll-off capacity to quickly transport material in support of a contingency.”39 Mobility studies conducted from the 1990s until recently, however, were all done in the post-Cold War era, when U.S. military force planning focused to a large degree on potential crises and conflicts against regional military powers such as Iran and North Korea. Given the recent shift from the post-Cold War era to the new era of renewed great power competition and the resulting formal shift in U.S. military force planning toward a primary emphasis on potential challenges posed by China and Russia, it is not clear that MCRS-18 will leave the figure of 20 million square feet of roll-on-roll-off capacity unchanged. A change in this figure could have implications for the content of a new national maritime strategy.

37 Source: U.S. Transportation Command, “Mobility Capabilities and Requirements Study Gets Underway,” March 29, 2018.

38 Statement of General Darren W. McDew, United States Air Force, Commander, United States Transportation Command, Before the Senate Armed Services Committee On the State of the Command, April 10, 2018, p., 12.

Recapitalization of DOD Sealift Fleet

A third observation relates to DOD’s aging fleet of surge sealift ships. Since 2016, the condition of this fleet and DOD’s strategy for recapitalizing it in coming years have become matters of concern for policymakers. In February 2017, the Army reportedly sent an information paper to Congress warning of an “unacceptable risk in force projection” within the next five years if the Navy does not act quickly to address the situation. In May 2016, the House Armed Services Committee directed GAO to report on the readiness of Military Sealift Command Ships (MSC) and employment plans. GAO’s report, issued in August 2017, focused in part on declining readiness rates for DOD’s surge sealift ships.

In March 2018, the Navy reportedly submitted to Congress a report on a proposed strategy for recapitalizing the surge sealift fleet, as well as requested legislative authorities for implementing the strategy. Section 1021 of the National Defense Authorization Act for Fiscal Year 2018 (H.R. 2810/P.L. 115-91 of December 12, 2017) and Sections 1012 and 1013 of the John S. McCain National Defense Authorization Act for Fiscal Year 2019 (H.R. 5515/P.L. 115-232 of August 13, 2018) amended 10 U.S.C. 2218—the statute governing the National Defense Sealift Fund (NDSF)—to, among other things, provide DOD with authority, subject to certain conditions, to purchase used vessels, including a limited number of foreign-built vessels, as part of its effort to recapitalize the surge sealift fleet. Section 1019 of P.L. 115-232 requires the Navy, in consultation with the Maritime Administration (MARAD) and USTRANSCOM, submit to the congressional defense committees a report setting forth a business case analysis of recapitalization options for the Ready Reserve Force (RRF). How, and how quickly, the surge sealift fleet is recapitalized could have implications for the content of a new national maritime strategy.

Potential Shortfall of Navy Escorts and Possible Impacts on Mariners

A fourth observation relates to the availability of U.S.-citizen mariners to crew DOD sealift ships in wartime. GAO notes MARAD’s September 2017 estimate of a potential shortage of U.S.-citizen mariners available to crew U.S.-owned reserve sealift ships during a crisis or conflict. The challenge of finding

44 Section 1019 states that the business case analysis is to include each sealift capability area and associated capacity for which RRF ships are required to be recapitalized through FY2048, and that the categories of ships to be considered are to include U.S. purpose-built vessels such as Common Hull Auxiliary Multi-mission Platform (CHAMP) ships; U.S. non-purpose built vessels such as vessels formerly engaged in Jones Act trade; foreign-built ships that participated in the Maritime Security Program (MSP); foreign-built vessels that did not participate in the MSP; and foreign-designed, U.S.-built ships.

adequate numbers of appropriately trained mariners to crew DOD sealift ships in time of crisis or conflict is a longstanding issue, dating back at least to 1990, when mariners in their 50s, 60s, and 70s (and one aged 81), some brought out of retirement, were reportedly needed to help fill out the crews of DOD sealift ships that were activated for Operation Desert Shield (the initial phase of the U.S. reaction to Iraq’s 1990 invasion of Kuwait). Problems in filling out ship crews reportedly contributed to delays in activating some RRF sealift ships to participate in the operation. A potential shortage of U.S.-citizen mariners for manning DOD sealift ships in wartime has been a recurring matter of concern since then.

This longstanding issue, however, may now be affected by a new factor that relates to the defense of DOD sealift ships in wartime. From 1990 until recently (i.e., during the post-Cold War era), the defense of DOD sealift ships was not a pressing concern. In the new era of renewed major power competition, it has become a concern, given current and potential future Chinese and Russian capabilities for interdicting ships. Section 1072 of the National Defense Authorization Act for Fiscal Year 2018 (H.R. 2810/P.L. 115-91 of December 12, 2017) requires the Navy to submit a report on its plans for defending combat logistics and strategic mobility forces—meaning Navy underway replenishment ships, RRF sealift ships, and MSC surge sealift ships—against potential wartime threats. The report is to include, among other things, a “description of the combat logistics and strategic mobility forces capacity, including additional combat logistics and strategic mobility forces, that may be required due to losses from attacks,” an “assessment of the ability and availability of United States naval forces to defend combat logistics and strategic mobility forces from the threats,” and a “description of specific capability gaps or risk areas in the ability or availability of United States naval forces to defend combat logistics and strategic mobility forces from the threats…”

The question of how DOD sealift ships will be defended in wartime, including the possibility of capability gaps for defending them, could have implications for the potential shortage of U.S.-citizen mariners for crewing DOD sealift ships in wartime. An October 10, 2018, press report stated:

In the event of a major war with China or Russia, the U.S. Navy, almost half the size it was during the height of the Cold War, is going to be busy with combat operations. It may be too busy, in fact, to always escort the massive sealift effort it would take to transport what the Navy estimates will be roughly 90 percent of the Marine Corps and Army gear the force would need to sustain a major conflict.

That’s the message Mark Buzby, the retired rear admiral who now leads the Department of Transportation’s Maritime Administration, has gotten from the Navy, and it’s one that has instilled a sense of urgency around a major cultural shift inside the force of civilian mariners that would be needed to support a large war effort.

“The Navy has been candid enough with Military Sealift Command and me that they will probably not have enough ships to escort us. It’s: ‘You’re on your own; go fast, stay quiet,’” Buzby told Defense News in an interview earlier this year.

Along with Rear Adm. Dee Mewbourne at Military Sealift Command, who would get operational control of the whole surge force in a crisis, Buzby has been working to educate mariners on things that might seem basic to experienced Navy personnel but are new to many civilian mariners….

… significant losses among the available pool of mariners would likely dissuade some from volunteering (bad) and would mean the loss of mariners with critical skills needed to operate the

fleet for months or even years in a major contingency (worse). And even without losses, MARAD estimates the country is about 1,800 mariners short if any kind of rotational presence is needed….

To try and offset these daunting challenges, MSC and the Maritime Administration are getting their mariners to think more like sailors when it comes to digital emissions....

“Adm. Mewbourn at Military Sealift Command and I have talked a lot about this and we have been trying to get the word out to people that we are going to have to do things differently,” Buzby said.

“Turn your navigation lights off, turn your [Automatic Identification System] off, turn your radars off, tell your crews not to use their cell phones — all those [Emissions Condition] things that we in the Navy are familiar with that are completely foreign to a merchant mariner and are seen as an imposition....

Military Sealift Command is focusing more on operating inside contested waters, said Tom Van Leunen, the command’s spokesman.

“We are operationalizing the force, that’s been Adm. Mewbourn’s focus since he got here. We’re focused on preparing mariners for the more complex operational environment,” Van Leunen said.

As part of those efforts, the command has developed a basic and advanced operations course for its mariners and has been participating in more fleet exercises, he said.

Mewbourn’s efforts on “mariner resiliency” have been setting the right tone, Buzby said. The effort focuses on containing electronic emissions, becoming physically fit to be able to combat damage over long periods and a sobering reminder at the end, he added.

“The last bullet point on one of the slides is ‘Learn how to swim,’” he said. “It’s to that point. There’s not going to be a bunch of destroyers around us as we take those ships over there. We’re going to be hitting the sea buoy, cranking it up and going hell-bent for leather, hoping to stay undetected.”

… while the [NATO] alliance continues to scrape the rust off its large-scale logistics trains, the question of whether the mariners will show up to man the lift vessels is an open one, and one that Buzby thinks about from his office at the MARAD.

“We are going into a contested environment, so we are going to have attrition to deal with, in both ships and the people who sail on them,” Buzby said. “Who knows, that might dissuade some people.

“The tradition of the Merchant Marine is we go to sea no matter what, damn the torpedoes. Most of us believe that our people will not be dissuaded. But until they walk up the gangway, you never know.”

An Implication from the Above Observations

One implication of these four observations is that the situation concerning the future of military sealift is currently complex and dynamic, with multiple issues and developments unfolding in parallel. This will make the task of assessing sealift needs and capabilities and developing a supporting national maritime strategy more challenging.

Chairman Mast, this concludes my statement. Thank you again for the opportunity to testify, and I will be pleased to respond to any questions the subcommittee may have.

Appendix A. Biography—Ronald O’Rourke

Mr. O’Rourke is a Phi Beta Kappa graduate of the Johns Hopkins University, from which he received his B.A. in international studies, and a valedictorian graduate of the University’s Paul Nitze School of Advanced International Studies, where he received his M.A. in the same field.

Since 1984, Mr. O’Rourke has worked as a naval analyst for CRS. He has written many reports for Congress on various issues relating to the Navy, the Coast Guard, defense acquisition, China’s naval forces and maritime territorial disputes, the Arctic, the international security environment, and the U.S. role in the world. He regularly briefs Members of Congress and congressional staffers, and has testified before congressional committees on many occasions.

In 1996, he received a Distinguished Service Award from the Library of Congress for his service to Congress on naval issues.

In 2010, he was honored under the Great Federal Employees Initiative for his work on naval, strategic, and budgetary issues.

In 2012, he received the CRS Director’s Award for his outstanding contributions in support of the Congress and the mission of CRS.

In 2017, he received the Superior Public Service Award from the Navy for service in a variety of roles at CRS while providing invaluable analysis of tremendous benefit to the Navy for a period spanning decades.

Mr. O’Rourke is the author of several journal articles on naval issues, and is a past winner of the U.S. Naval Institute’s Arleigh Burke essay contest. He has given presentations on naval, Coast Guard, and strategy issues to a variety of U.S. and international audiences in government, industry, and academia.
Appendix B. A Summary of Some Acquisition Lessons Learned for Government Shipbuilding

This appendix presents a general summary of lessons learned in government shipbuilding, reflecting comments made repeatedly by various sources over the years. These lessons learned include the following:

- **At the outset, get the operational requirements for the program right.** Properly identify the program’s operational requirements at the outset. Manage risk by not trying to do too much in terms of the program’s operational requirements, and perhaps seek a so-called 70%-to-80% solution (i.e., a design that is intended to provide 70%-80% of desired or ideal capabilities). Achieve a realistic balance up front between operational requirements, risks, and estimated costs.

- **Impose cost discipline up front.** Use realistic price estimates, and consider not only development and procurement costs, but life-cycle operation and support (O&S) costs.

- **Employ competition** where possible in the awarding of design and construction contracts.

- **Use a contract type that is appropriate for the amount of risk involved,** and structure its terms to align incentives with desired outcomes.

- **Minimize design/construction concurrency** by developing the design to a high level of completion before starting construction and by resisting changes in requirements (and consequent design changes) during construction.

- **Properly supervise construction work.** Maintain an adequate number of properly trained Supervisor of Shipbuilding (SUPSHIP) personnel.

- **Provide stability for industry,** in part by using, where possible, multiyear procurement (MYP) or block buy contracting.

- **Maintain a capable government acquisition workforce** that understands what it is buying, as well as the above points.

Identifying these lessons is arguably not the hard part—most if not all these points have been cited for years. The hard part, arguably, is living up to them without letting circumstances lead program-execution efforts away from these guidelines.

Appendix C. Some Considerations Relating to Warranties in Government Shipbuilding and Other Government Acquisition

This appendix presents some considerations relating to warranties in shipbuilding and other defense acquisition.50

In discussions of government shipbuilding, one question that sometimes arises is whether including a warranty in a shipbuilding contract is preferable to not including one. The question can arise, for example, in connection with a GAO finding that “the Navy structures shipbuilding contracts so that it pays shipbuilders to build ships as part of the construction process and then pays the same shipbuilders a second time to repair the ship when construction defects are discovered.”51

Including a warranty in a shipbuilding contract (or a contract for building some other kind of end item), while potentially valuable, might not always be preferable to not including one—it depends on the circumstances of the acquisition, and it is not necessarily a valid criticism of an acquisition program to state that it is using a contract that does not include a warranty (or a weaker form of a warranty rather than a stronger one).

Including a warranty generally shifts to the contractor the risk of having to pay for fixing problems with earlier work. Although that in itself could be deemed desirable from the government’s standpoint, a contractor negotiating a contract that will have a warranty will incorporate that risk into its price, and depending on how much the contractor might charge for doing that, it is possible that the government could wind up paying more in total for acquiring the item (including fixing problems with earlier work on that item) than it would have under a contract without a warranty.

When a warranty is not included in the contract and the government pays later on to fix problems with earlier work, those payments can be very visible, which can invite critical comments from observers. But that does not mean that including a warranty in the contract somehow frees the government from paying to fix problems with earlier work. In a contract that includes a warranty, the government will indeed pay something to fix problems with earlier work—but it will make the payment in the less-visible (but still very real) form of the up-front charge for including the warranty, and that charge might be more than what it would have cost the government, under a contract without a warranty, to pay later on for fixing those problems.

From a cost standpoint, including a warranty in the contract might or might not be preferable, depending on the risk that there will be problems with earlier work that need fixing, the potential cost of fixing such problems, and the cost of including the warranty in the contract. The point is that the goal of avoiding highly visible payments for fixing problems with earlier work and the goal of minimizing the cost to the government of fixing problems with earlier work are separate and different goals, and that pursuing the first goal can sometimes work against achieving the second goal.52

50 This appendix is adapted from Appendix K of CRS Report RL32665, \textit{Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress}, by Ronald O’Rourke.

51 See Government Accountability Office, \textit{Navy Shipbuilding: Past Performance Provides Valuable Lessons for Future Investments}, GAO-18-238SP, June 2018, p. 21. A graphic on page 21 shows a GAO finding that the government was financially responsible for shipbuilder deficiencies in 96% of the cases examined by GAO, and that the shipbuilder was financially responsible for shipbuilder deficiencies in 4% of the cases.

52 It can also be noted that the country’s two largest builders of Navy ships—General Dynamics (GD) and Huntington Ingalls Industries (HII)—derive about 60% and 96%, respectively, of their revenues from U.S. government work. (See General
The Department of Defense’s guide on the use of warranties states the following:

Federal Acquisition Regulation (FAR) 46.7 states that “the use of warranties is not mandatory.” However, if the benefits to be derived from the warranty are commensurate with the cost of the warranty, the CO [contracting officer] should consider placing it in the contract. In determining whether a warranty is appropriate for a specific acquisition, FAR Subpart 46.703 requires the CO to consider the nature and use of the supplies and services, the cost, the administration and enforcement, trade practices, and reduced requirements. The rationale for using a warranty should be documented in the contract file....

In determining the value of a warranty, a CBA [cost-benefit analysis] is used to measure the life cycle costs of the system with and without the warranty. A CBA is required to determine if the warranty will be cost beneficial. CBA is an economic analysis, which basically compares the Life Cycle Costs (LCC) of the system with and without the warranty to determine if warranty coverage will improve the LCCs. In general, five key factors will drive the results of the CBA: cost of the warranty + cost of warranty administration + compatibility with total program efforts + cost of overlap with Contractor support + intangible savings. Effective warranties integrate reliability, maintainability, supportability, availability, and life-cycle costs. Decision factors that must be evaluated include the state of the weapon system technology, the size of the warranted population, the likelihood that field performance requirements can be achieved, and the warranty period of performance.53

Dynamics, 2016 Annual Report, page 9 of Form 10-K [PDF page 15 of 88]) and Huntington Ingalls Industries, 2016 Annual Report, page 5 of Form 10-K [PDF page 19 of 134]). Thus, even if a warranty in a shipbuilding contract with one of these firms were to somehow mean that the government did not have pay under the terms of that contract—either up front or later on—for fixing problems with earlier work done under that contract, there would still be a question as to whether the government would nevertheless wind up eventually paying much of that cost as part of the price of one or more future contracts the government may have that firm.

Appendix D. Some Considerations Relating to Avoiding Procurement Cost Growth vs. Minimizing Procurement Costs

This appendix presents some considerations relating to avoiding procurement cost growth vs. minimizing procurement costs in shipbuilding and other government acquisition.54

The affordability challenge posed by government shipbuilding plans can reinforce the strong oversight focus on preventing or minimizing procurement cost growth in government shipbuilding programs, which is one expression of a strong oversight focus on preventing or minimizing cost growth in DOD acquisition programs in general. This oversight focus may reflect in part an assumption that avoiding or minimizing procurement cost growth is always synonymous with minimizing procurement cost. It is important to note, however, that as paradoxical as it may seem, avoiding or minimizing procurement cost growth is not always synonymous with minimizing procurement cost, and that a sustained, singular focus on avoiding or minimizing procurement cost growth might sometimes lead to higher procurement costs for the government.

How could this be? Consider the example of a design for the lead ship of a new class of ships. The construction cost of this new design is uncertain, but is estimated to be likely somewhere between Point A (a minimum possible figure) and Point D (a maximum possible figure). (Point D, in other words, would represent a cost estimate with a 100% confidence factor, meaning there is a 100% chance that the cost would come in at or below that level.) If the government wanted to avoid cost growth on this ship, it could simply set the ship’s procurement cost at Point D. Industry would likely be happy with this arrangement, and there likely would be no cost growth on the ship.

The alternative strategy open to the government is to set the ship’s target procurement cost at some figure between Points A and D—call it Point B—and then use that more challenging target cost to place pressure on industry to sharpen its pencils so as to find ways to produce the ship at that lower cost. (Government officials sometimes refer to this as “pressurizing” industry.) In this example, it might turn out that industry efforts to reduce production costs are not successful enough to build the ship at the Point B cost. As a result, the ship experiences one or more rounds of procurement cost growth, and the ship’s procurement cost rises over time from Point B to some higher figure—call it Point C.

Here is the rub: Point C, in spite of incorporating one or more rounds of cost growth, might nevertheless turn out to be lower than Point D, because Point C reflected efforts by the shipbuilder to find ways to reduce production costs that the shipbuilder might have put less energy into pursuing if the government had simply set the ship’s procurement cost initially at Point D.

Setting the ship’s cost at Point D, in other words, may eliminate the risk of cost growth on the ship, but does so at the expense of creating a risk of the government paying more for the ship than was actually necessary. DOD could avoid cost growth on new procurement programs starting tomorrow by simply setting costs for those programs at each program’s equivalent of Point D. But as a result of this strategy, DOD could well wind up leaving money on the table in some instances—of not, in other words, minimizing procurement costs.

DOD does not have to set a cost precisely at Point D to create a potential risk in this regard. A risk of leaving money on the table, for example, is a possible downside of requiring the government to budget for its acquisition programs at something like an 80% confidence factor—an approach that some observers

54 This appendix is adapted from Appendix L of CRS Report RL32665, Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress, by Ronald O'Rourke.
have recommended—because a cost at the 80% confidence factor is a cost that is likely fairly close to Point D.

Procurement cost growth is often embarrassing for the government and industry, and can damage their credibility in connection with future procurement efforts. Procurement cost growth can also disrupt congressional budgeting by requiring additional appropriations to pay for something Congress thought it had fully funded in a prior year. For this reason, there is a legitimate public policy value to pursuing a goal of having less rather than more procurement cost growth.

Procurement cost growth, however, can sometimes be in part the result of government efforts to use lower initial cost targets as a means of pressuring industry to reduce production costs—efforts that, notwithstanding the cost growth, might be partially successful. A sustained, singular focus on avoiding or minimizing cost growth, and of punishing the government for all instances of cost growth, could discourage the government from using lower initial cost targets as a means of pressurizing industry, which could deprive the government of a tool for controlling procurement costs.

The point here is not to excuse away cost growth, because cost growth can occur in a program for reasons other than the government’s attempt to pressurize industry. Nor is the point to abandon the goal of seeking lower rather than higher procurement cost growth, because, as noted above, there is a legitimate public policy value in pursuing this goal. The point, rather, is to recognize that this goal is not always synonymous with minimizing procurement cost, and that a possibility of some amount of cost growth might be expected as part of an optimal government strategy for minimizing procurement cost. Recognizing that the goals of seeking lower rather than higher cost growth and of minimizing procurement cost can sometimes be in tension with one another can lead to an approach that takes both goals into consideration. In contrast, an approach that is instead characterized by a sustained, singular focus on avoiding and minimizing cost growth may appear virtuous, but in the end may wind up costing the government more.
Appendix E. Coast Guard NSC, OPC, FRC, and WCC Acquisition Programs

This appendix presents discussion of the Coast Guard’s National Security Cutter (NSC) program, Offshore Patrol Cutter (OPC) program, Fast Response Cutter (FRC) program, and Waterways Commerce Cutter (WCC) program, which help form the context for Coast Guard icebreaker procurement in a situation of finite Coast Guard procurement funding. The CRS report on cutter procurement provides in-depth discussions of the NSC, OPC, and FRC programs.\(^{55}\) Below are some focused comments on these programs and the WCC program.

Adequacy of Planned Quantities of NSCs, OPCs, and FRCs

The Coast Guard’s 91-ship program of record (POR) for general-purpose cutters—which dates to 2004 and calls for a force of 8 NSCs, 25 OPCs, and 58 FRCs—will provide substantially more capability than the force of older-generation cutters it will replace. At the same time, it can be useful to recall that Coast Guard studies have concluded that the planned total of 91 NSCs, OPCs, and FRCs would provide only 61% of the NSCs, OPCs, and FRCs that would be needed to fully perform the service’s statutory missions in coming years, in part because Coast Guard mission demands are expected to be greater in coming years than they were in the past. As shown in Table E-1, the Coast Guard’s 2011 Fleet Mix Analysis (FMA) Phase 2—the last general analysis of future Coast Guard ship force structure requirements to be publicly released by the Coast Guard—concluded that fully performing the Coast Guard’s statutory missions in coming years would require a total of 149 NSCs, OPCs, and FRCs.\(^{36}\) This point may be particularly salient right now in connection with the NSC and FRC programs, procurement of which would end soon under the POR figures.

<table>
<thead>
<tr>
<th>Ship Type</th>
<th>Program of Record</th>
<th>Refined Objective Mix from Fleet Mix Analysis, Phase 2 (2011)</th>
</tr>
</thead>
<tbody>
<tr>
<td>NSC</td>
<td>8</td>
<td>9</td>
</tr>
<tr>
<td>OPC</td>
<td>25</td>
<td>49</td>
</tr>
<tr>
<td>FRC</td>
<td>58</td>
<td>91</td>
</tr>
<tr>
<td>Total</td>
<td>91</td>
<td>149</td>
</tr>
</tbody>
</table>

Source: Coast Guard Fleet Mix Analysis, Phase 2, 2011, Table ES-2 on p. iv. For additional discussion, see Appendix A of CRS Report R42567, Coast Guard Cutter Procurement: Background and Issues for Congress, by Ronald O'Rourke.

National Security Cutter (NSC) Program

The NSCs were procured at irregular rather than regular intervals, and they were procured with annual rather than multiyear contracts. Both of these aspects of their acquisition made the ships more expensive. If NSCs had instead been procured at regular intervals under multiyear contracts that included EOQ authority, the reduction in their combined procurement cost could have been substantial—possibly

\(^{55}\) See CRS Report R42567, Coast Guard Cutter Procurement: Background and Issues for Congress, by Ronald O'Rourke.

\(^{36}\) For additional discussion, see Appendix A of CRS Report R42567, Coast Guard Cutter Procurement: Background and Issues for Congress, by Ronald O'Rourke.
enough (or even more than enough) to have paid for one of the 11 NSCs that have been fully funded through FY2018.

As discussed below in the section on the OPC program, building additional NSCs is one option for acquiring replacements for retiring medium-endurance cutters more quickly than currently planned, so as to close more quickly any gap in time between retirements of the medium-endurance cutters and the entry into service of their replacements. The NSCs are bigger and in some respects more capable than OPCs, and they would individually be more expensive to procure and to operate and support than OPCs. The difference in size, capability, and cost between the NSC and OPC design is not insignificant, but neither is it a night-and-day difference. With an estimated full-load displacement of 3,500 to 3,730 tons, for example, OPCs are to be roughly 80% as large as NSCs, which have a full load displacement of about 4,500 tons. In terms of size, capability, and cost, the OPC is a lot closer to the NSC than it is to the FRC, which is a large patrol craft with a full load displacement of 353 tons.

Procurement of NSCs for replacing retiring Hamilton-class high-endurance cutters is approaching its end. If additional NSCs were procured in the near term in parallel with OPC procurement as part of a strategy for more quickly replacing retiring medium-endurance cutters, the additional NSCs could be built using the currently open NSC production line, avoiding a break in that production line and thereby maximizing production learning curve benefits. The procurement cost of any additional NSCs might be further reduced by procuring them at regular intervals and using an MYP contract.

OPC Program

The Coast Guard is using a contract with options to procure the first nine OPCs. As stated earlier, although a contract with options might look like a multiyear contract, it is not a form of multiyear contracting. A contract with options operates more like annual contracting and cannot achieve the kinds of savings that are possible with multiyear contracting.

Using multiyear contracting in the 25-ship OPC program—specifically, block buy contracting with EOQ authority for the initial ships in the program, followed by either block buy contracting with EOQ authority or MYP contracting for later ships in the program—rather than annual contracting might reduce the total acquisition cost of the program by about $1 billion. This potential savings of $1 billion—a figure equal to or greater than the acquisition cost of either a polar icebreaker or a 35-ship Waterways Commerce Cutter program—represents a rare opportunity for using multiyear contracting to reduce the cost of an individual Coast Guard acquisition program by such an amount.

Acquiring the first nine ships in the OPC program under the current contract with options could forego roughly $350 million of the $1 billion in potential savings. Much of this $350 million in potential savings might be recaptured by renegotiating the current contract so as to convert it, with congressional approval, into a block buy contract with EOQ authority. If acquisition regulations prohibit such a renegotiation, the Coast Guard alternatively could choose to not exercise most of the options in the current contract and hold a new competition for building the current NSC design under a block buy contract. The current OPC builder—Eastern Shipbuilding of Panama City, FL—would be well positioned to win such a competition.

57 As of May 26, 2017, the OPC’s light ship displacement (i.e., its “empty” displacement, without fuel, water, ballast, stores, and crew) was preliminarily estimated at about 2,640 to 2,800 tons, and its full load displacement was preliminarily estimated at about 3,500 to 3,730 tons. (Source: Figures provided to CRS by Coast Guard liaison office, May 26, 2017.)

59 For additional discussion, see CRS Report R41909, *Multiyear Procurement (MYP) and Block Buy Contracting in Defense Acquisition: Background and Issues for Congress*, by Ronald O'Rourke and Moshe Schwartz, particularly the section entitled “MYP and BBC vs. Contracts with Options.”
since it would involve building Eastern’s own design and Eastern would already have moved down the initial (i.e., the steepest) part of the learning curve for building the design.

The current planned procurement profile for the OPC, which reaches a maximum projected rate of two ships per year, would deliver OPCs many years after the end of the originally planned service lives of the medium-endurance cutters that they are to replace. Coast Guard officials have testified that the service plans to extend the service lives of the medium-endurance cutters until they are replaced by OPCs. There will be maintenance and repair expenses associated with extending the service lives of medium-endurance cutters, and if the Coast Guard does not also make investments to increase the capabilities of these ships, the ships may have less capability in certain regards than OPCs.

One possible option for addressing this situation would be to increase the maximum annual procurement rate of the replacement ships from the currently planned two ships per year to a higher figure. Increasing the rate to three or four ships per year, for example, could result in the 25th ship being delivered about four years or six years sooner, respectively, than under the currently planned maximum rate. Increasing the procurement rate would require a substantial increase to the Coast Guard’s PC&I account, which gets back to the issue discussed earlier of future funding levels for that account and Congress’s agency in setting funding levels and determining the composition of federal spending.

From a production point of view, there are at least three options for increasing the annual procurement rate of replacement ships from the currently planned two ships per year to a higher rate, so as to close any gap in time between the retirements of medium-endurance cutters and the entry into service of their replacements. These options are as follows:

- increasing the annual OPC production rate at Eastern Shipbuilding, if Eastern’s capacity would permit this;
- building additional OPCs at one or two additional shipyards, such as Bollinger Shipyards of Lockport, LA and/or General Dynamics’ Bath Iron Works (GD/BIW) of Bath, ME—the two other finalists in the OPC competition; and
- building additional NSCs at Huntington Ingalls Industries/Ingalls Shipbuilding (HII/Ingalls).

These three options are not mutually exclusive—they could be pursued in combination. Additional OPCs built at Bollinger and/or GD/BIW could be built to the OPC designs that those two shipbuilders submitted for the OPC competition. (Those designs are presumably optimized for the production facilities at Bollinger and GD/BIW. The Coast Guard, moreover, currently does not have data rights for the complete vessel design for Eastern’s OPC design.60) Building additional OPCs at Bollinger and/or GD/BIW to the designs developed by those two shipbuilders would result in a fleet with two or three classes of OPCs, a situation that would increase OPC life-cycle operation and support costs and complicate the training and assignment of OPC crew members. These additional life-cycle costs and complications, however, might be deemed acceptable in return for avoiding the costs and risks of extending the service lives of medium-endurance cutters and shortening any gap in time between the retirement of medium-endurance cutters and the entry into service of their replacements. The Navy decided in 2010 to fill its requirement for LCSs by building two different LCS designs at the same time, and did so knowing that this would result in some additional life-cycle operation and support costs and crewing-related complications compared to the option of building all LCSs to a single design.61 The option of building additional NSCs as replacements for retiring medium-endurance cutters was discussed above in the section on the NSC program.

60 Source regarding data rights: Email from Coast Guard liaison office to CRS, September 6, 2017.
61 For additional discussion of the LCS program, see CRS Report RL33741, Navy Littoral Combat Ship (LCS) Program: Background and Issues for Congress, by Ronald O'Rourke. A total of 35 LCSs have been funded through FY2019. Of these 35 ships, 17 will be built to one of the LCS designs, and 18 will be built to the other.
FRC Program

With 50 FRCs procured through FY2018 and four more requested for FY2019, the FRC is approaching the 58-ship figure called for in the Coast Guard’s program of record. As shown earlier in Table E-1, however, the Coast Guard’s 2011 Fleet Mix Analysis Phase II concluded that a total of 91 FRCs would be needed as part of an overall force of 149 general-purpose cutters to fully perform the service’s statutory missions in coming years.

Procuring additional FRCs beyond the 58th would require additional procurement funding, which gets back to the issue discussed earlier of future funding levels for the PC&I account and Congress’s agency in setting funding levels and determining the composition of federal spending. As with the option discussed earlier of procuring additional NSCs, procuring additional FRCs immediately following the procurement of the 58th FRC would permit them to be built using the currently open NSC production line, avoiding a break in that production line and thereby maximizing production learning curve benefits. And as with the NSC option discussed earlier, the cost of any such additional FRCs could be reduced by procuring them under an MYP or block buy contract. The resulting increase in Coast Guard force structure from 58 FRCs to some higher number would increase long-term Coast Guard operation and support costs above currently planned levels.

WCC Program

The WCC program—the program to replace the Coast Guard’s current 35-ship inland waterways fleet—is a smaller program than those discussed above. With a notional procurement cost of roughly $25 million per cutter, a 35-ship replacement program might have a total acquisition cost of roughly $900 million.62 Although the scale of the program is more modest than that of the NSC, OPC, and FRC programs, the WCC program is of importance in terms of its economic benefit to the nation (by supporting waterborne commerce) and the bidding opportunity it will provide to U.S. shipyards that are not capable of building larger Coast Guard cutters.

As the Coast Guard begins to develop the details of this program, potential oversight issues could include, among other things, the planned number of replacement cutters (which has not yet been determined and could turn out to be something other than 35), planned annual procurement quantities and the resulting schedule for replacing the existing ships, whether to develop a new design or instead use a parent design, the number of shipyards to be used to build the ships, and the contracting strategy, including whether to use multiyear contracting.

62 Source for $25 million figure: Spoken testimony of Coast Guard Commandant Karl Schultz during the question-and-answer portion of a September 16, 2018, hearing on Coast Guard modernization and recapitalization before the Coast Guard and Maritime Transportation subcommittee of the House Transportation and Infrastructure Committee, as reflected in the transcript of the hearing. The Commandant stated: “I’m loathed to put a number out, but I think you’re talking a $25 million, plus or minus, [cost per] ship.” The planned number of new replacement WCCs has not yet been determined and could turn out to be something other than 35. GAO states that “according to Coast Guard officials, the preliminary rough order of magnitude estimate for total acquisition cost is $1.1 billion.” Government Accountability Office, Coast Guard Acquisitions: Actions Needed to Address Longstanding Portfolio Management Challenges, GAO-18-454, July 2018, p. 19.
Appendix F. NASEM Report Recommendation for Building Heavy and Medium Polar Icebreakers to a Common Design

Regarding its proposal to build heavy and medium polar icebreakers to a common design, the July 2017 NASEM report stated (emphasis as in original):

2. Recommendation: The United States Congress should fund the construction of four polar icebreakers of common design that would be owned and operated by the United States Coast Guard (USCG).

The current Department of Homeland Security (DHS) Mission Need Statement... contemplates a combination of medium and heavy icebreakers. The committee’s recommendation is for a single class of polar icebreaker with heavy icebreaking capability. Proceeding with a single class means that only one design will be needed, which will provide cost savings. The committee has found that the fourth heavy icebreaker could be built for a lower cost than the lead ship of a medium icebreaker class....

The DHS Mission Need Statement contemplated a total fleet of “potentially” up to six ships of two classes—three heavy and three medium icebreakers. Details appear in the High Latitude Mission Analysis Report. The Mission Need Statement indicated that to fulfill its statutory missions, USCG required three heavy and three medium icebreakers; each vessel would have a single crew and would homeport in Seattle. The committee’s analysis indicated that four heavy icebreakers will meet the statutory mission needs gap identified by DHS for the lowest cost....

4. Finding: In developing its independent concept designs and cost estimates, the committee determined that the costs estimated by USCG for the heavy icebreaker are reasonable. However, the committee believes that the costs of medium icebreakers identified in the High Latitude Mission Analysis Report are significantly underestimated....

Although USCG has not yet developed the operational requirements document for a medium polar icebreaker, the committee was able to apply the known principal characteristics of the USCG Cutter Healy to estimate the scope of work and cost of a similar medium icebreaker. The committee estimates that a first-of-class medium icebreaker will cost approximately $786 million. The fourth ship of the heavy icebreaker series is estimated to cost $692 million. Designing a medium-class polar icebreaker in a second shipyard would incur the estimated engineering, design, and planning costs of $126 million and would forgo learning from the first three ships; the learning curve would be restarted with the first medium design. Costs of building the fourth heavy icebreaker would be less than the costs of designing and building a first-of-class medium icebreaker....

6. Recommendation: USCG should ensure that the common polar icebreaker design is science-ready and that one of the ships has full science capability.

All four proposed ships would be designed as “science-ready,” which will be more cost-effective when one of the four ships—most likely the fourth—is made fully science capable. Including science readiness in the common polar icebreaker design is the most cost-effective way of fulfilling both the USCG’s polar missions and the nation’s scientific research polar icebreaker needs.... The incremental costs of a science-ready design for each of the four ships ($10 million to $20 million per ship) and of full science capability for one of the ships at the initial build (an additional $20 million to $30 million) are less than the independent design and build cost of a dedicated research medium icebreaker.... In briefings at its first meeting, the committee learned that the National Science Foundation and other agencies do not have budgets to support full-time heavy icebreaker access or the incremental cost of design, even though their science programs may require this capability. Given the small incremental cost, the committee believes that the science capability cited above should be included in the acquisition costs.
Science-ready design includes critical elements that cannot be retrofitted cost-effectively into an existing ship and that should be incorporated in the initial design and build. Among these elements are structural supports, appropriate interior and exterior spaces, flexible accommodation spaces that can embark up to 50 science personnel, a hull design that accommodates multiple transducers and minimizes bubble sweep while optimizing icebreaking capability, machinery arrangements and noise dampening to mitigate interference with sonar transducers, and weight and stability latitudes to allow installation of scientific equipment. Such a design will enable any of the ships to be retrofitted for full science capability in the future, if necessary.

Within the time frame of the recommended build sequence, the United States will require a science-capable polar icebreaker to replace the science capabilities of the Healy upon her retirement. To fulfill this need, one of the heavy polar icebreakers would be procured at the initial build with full science capability; the ability to fulfill other USCG missions would be retained. The ship would be outfitted with oceanographic overboarding equipment and instrumentation and facilities comparable with those of modern oceanographic research vessels. Some basic scientific capability, such as hydrographic mapping sonar, should be acquired at the time of the build of each ship so that environmental data that are essential in fulfilling USCG polar missions can be collected.\(^6^3\)