Evaluation of Penetrating Sealers for Concrete

TAC Meeting

04/26/2019
Technical Advisory Committee

- **Todd Hanson**, Office of Construction and Materials
- **Scott Neubauer**, Office of Bridges and Structures
- **Lee Bjerke**, Winneshiek County Engineer
- **Wade Weiss**, Greene County Engineer
Research Team

Peter Taylor, Director
Hamed Sadati, Assistant Scientist IV
Kejin Wang, Professor
National Concrete Pavement Technology Center
Iowa State University, Ames, Iowa

Katelyn Freeseman, Associate Director
Bridge Engineering Center
Iowa State University, Ames, Iowa

John T. Kevern, Associate Professor
Civil Engineering, University of Missouri-Kansas City
Purpose of the Work

• To evaluate recommended protocols and standards for testing the penetrating sealers

• To select, modify, or update the most appropriate testing protocols

• To examine the selected sealer performance in laboratory and field

• To develop guidelines and protocols for investigating the short- and long-term performance of the sealers
Enhanced Durability, Areas of Interest

- Joints
 - Paste deterioration due to chemical attack
 - Saturated frost damage
 - D-cracking
 - Mechanical damage
 - Early-age drying damage

- Bridge Decks
 - Reinforcement corrosion
 - De-icing salt scaling

Dealing with fluid transport into concrete…
Enhanced Durability, Solutions?

- A low w/cm ratio (i.e., about 0.40 to 0.42)
- Use of SCMs to reduce permeability and improve resistance to oxychloride formation
- Provide an adequate air void system
- Provide an adequate drainage system beneath the concrete
- Optimize the construction techniques
- Limit the use of aggressive salts
- Use of *surface treatments*
Popular Topical Treatment Families...

<table>
<thead>
<tr>
<th>Sealer Family</th>
<th>Mechanism of action</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>Silanes, siloxane, and siliconates</td>
<td>Water repellent</td>
<td>Silicon based, react with hydration products</td>
</tr>
<tr>
<td>Epoxies</td>
<td>Pore blocking or barrier coat<sup>i</sup></td>
<td>Thermoset polymers</td>
</tr>
<tr>
<td>Gum resins and mineral gums</td>
<td>Pore blocking</td>
<td>Synthetic or natural viscous hydrocarbons</td>
</tr>
<tr>
<td>Linseed oil</td>
<td>Pore blocking</td>
<td>Vegetable oil</td>
</tr>
<tr>
<td>Stearates</td>
<td>Water repellent</td>
<td>Soaps or metallic salts from fatty acids</td>
</tr>
<tr>
<td>Acrylics</td>
<td>Pore blocking or barrier coat<sup>ii</sup></td>
<td>Polymers or copolymers of acrylic acid…</td>
</tr>
<tr>
<td>Silicates and fluosilicates</td>
<td>Pore blocking</td>
<td>Silicon based with no organofunctional group</td>
</tr>
<tr>
<td>Urethanes and polyurethanes</td>
<td>Pore blocking or barrier coat<sup>iii</sup></td>
<td>Reactive resins</td>
</tr>
<tr>
<td>Polyesters</td>
<td>Pore blocking or barrier coat<sup>iii</sup></td>
<td>Synthetic resins</td>
</tr>
<tr>
<td>Chlorinated rubber</td>
<td>Pore blocking or barrier coat<sup>iv</sup></td>
<td>Chlorinated polyisoprene</td>
</tr>
<tr>
<td>Silicones</td>
<td>Water repellent</td>
<td>Silicon based with two organofunctional group</td>
</tr>
<tr>
<td>Vinlys</td>
<td>Pore blocking or barrier coat<sup>iii</sup></td>
<td>Polymers of acrylic and methacrylic acid</td>
</tr>
</tbody>
</table>

ⁱ Acting as pore blocker when less than 50% active ingredient
ⁱⁱ Pore blocking if solvent based, barrier coating if water based or high molecule weight
ⁱⁱⁱ Pore blocking if diluted and barrier coat if not diluted
^{iv} Mainly barrier, but can be pore blocker if too diluted
Surface Treatment

Surface coatings Pore blockers Pore liners

Medeiros and Helene 2009
Why Penetrating Sealers?

Transport: capillary suction, diffusion, and permeation

Capillary suction: typically considered as the dominant transport mechanism for concrete exposed to atmospheric exposures

\[\Delta P = \frac{2\sigma \cos \theta}{r} \]

\(\sigma \): surface tension
\(\theta \): contact angle
\(r \): pore radius

Liu and Hansen 2016
Why Penetrating Sealers?

Improved transport properties
Delayed critical saturation

Liu and Hansen 2016
Experimental Program

Four Concrete Types:

- **Control**: SAM number < 0.20, high quality aggregate in terms of resistance to D-cracking, and >25% Class C fly ash.
- **Experimental mixture #1**: Inadequate air void system, with a SAM number > 0.40, high quality aggregate, and >25% Class C fly ash.
- **Experimental mixture #2**: D-cracking susceptible, SAM number < 0.20, poor quality aggregate in terms of resistance to D-cracking, and >25% Class C fly ash.
- **Experimental mixture #3**: Oxychloride susceptible, SAM number < 0.20, high quality aggregate, and 100% ordinary Portland cement.
Five Sealer Types:

- **Silane;** solvent based
- **Acrylic;** solvent based
- **Silicate;** water based lithium silicate or colloidal silica
- **Vegetable oil;** SME solvent based
- **Crystalline water proofer**
Work Plan

- Characterization: contact angle, depth of penetration…
- Laboratory testing: transport, F/T, …
- Establish correlations, select a sealer for field implementation?
- TAC meeting to discuss the findings…
Work Plan

First Round

Round One:
- Reference concrete
- Without sealer
- With all 5 sealers

Selected Sealer

Second Round

Round Two:
- Mixtures: Exp. 1, 2, 3
- Without sealer
- With selected sealer

ISU Testing:
- ASTM C457
- Drop test
- Surface resistivity
- Gas permeability
- Penetration depth
- Contact angle
- LT-DSC

UMKC Testing:
- F/T AASHTO T161
- Absorption; ASTM C1585 – 90 days
- UV exposure; ASTM C793 + ASTM C1585

Expected Improvement Guidelines

FIELD IMPLEMENTATION

Extent of Improvement for each potential scenario
Work Plan

- Characterization: contact angle, depth of penetration…
- Laboratory testing: transport, F/T, …
- Establish correlations…

- **UV Exposure**: effective life of sealers
- **Field performance**

- Quantify benefits through life cycle cost analysis (LCCA)
Time Schedule

Task / Timeline (month)	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	
Project kick-off meeting																																					
Task 1 Literature review																																					
Task 2 2.1. Effect of sealers on concrete performance																																					
Task 2 2.2. Investigation on sealer materials																																					
Task 3 Field Implementation																																					
Task 4 Economic Analysis																																					
Technology Transfer (development of tech brief)																																					
TAC Meetings																																					
Final Report																																					